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1 Introduction

In this talk, X will always be a smooth projective variety over an algebraically closed field k,
char k = 0, equipped with a polarization OX(1). (Since we’ll only be working with examples
today, there’s no harm in supposing that k = C.) We will soon specialize to K3 surfaces, and
will mostly only be concerned with rank-2 (semi)stable sheaves.

Last week, we finished the construction of the moduli space M
(s)
OX(1)(P ) of semistable (stable)

sheaves on X with fixed Hilbert polynomial P . Today we’ll forget the general construction, and
move on to Huybrechts and Lehn’s main goal, studying the geometry of these moduli spaces.
The moral of the story will be that the moduli spaces have an uncanny tendency to inherit the
geometric properties of the spaces they arise from. For example, although we will only discuss
two specific examples today, it holds in much greater generality that the triviality of KX implies
the triviality of KM .

2 Preliminary facts

Fix a Hilbert polynomial P for the moment, so that we can discuss the moduli space M(P ) =
MOX(1)(P ). By “taking determinant bundles of sheaves”, we get a map M(P )→ Pic(X). What
this really means is that M(P ) corepresents the functor MOX(1)(P ), and this functor admits
a natural transformation to the (representable) Picard functor, so this natural transformation
must factor through a morphism M(P ) → Pic(X) of schemes. This allows us to fix another
invariant of our sheaves. In particular, if Q is a line bundle on X, [Q] is a closed point of Pic(X),
so we can let M(P,Q) denote the fiber of M(P ) over [Q]. This parametrizes (S-equivalence
classes of) semistable sheaves with determinant bundle Q. Define M s(P,Q) similarly.

Using the obstruction theory ideas that Sherman mentioned last week, one can prove upper
and lower bounds for dim[F ]M(P,Q), if F is stable:
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Theorem 2.1. Let F be a stable OX-module of rank r > 0 and determinant bundle Q, and let
M(P,Q) be as above. Then T[F ]M(P,Q) ∼= Ext1(F, F )0, and

ext1(F, F )0 − ext2(F, F )0 ≤ dim[F ]M(P,Q) ≤ ext1(F, F )0. (1)

If Ext2(F, F )0 = 0, then M(P ) and M(P,Q) are smooth at [F ].

(Here, Exti(F, F )0 is the kernel of a natural map Exti(F, F ) → H i(OX), which is always
surjective in characteristic 0.)

Definition 2.1. We call the lower bound ext1(F, F )0 − ext2(F, F ) the expected dimension of
M(P,Q) at F .

This expected dimension turns out to equal (r2 − 1)(g − 1) for curves—in which case the
vanishing of Ext2(F, F )0 is vacuous—and ∆(F )− (r2 − 1) · χ(OX) for surfaces. (In the case of
surfaces, it can be shown that the error term has a bound depending only on X and r.)

To explain the notation above: ∆(F ) is the “discriminant” ∆(F ) = 2rc2(F ) − (r − 1)c21(F ),
viewed as an integer via the degree map An(X)→ Z; the ci are Chern classes.

Since we’ll be talking more about Chern classes, let me take a moment to recall some ba-
sic facts about them that we’ll use. Given a vector bundle (or coherent sheaf?) F on X, the
Chern classes ci(F ) ∈ Ai(X) are a sequence of naturally defined elements of the Chow ring.
(You may have also heard of Chern classes in H2i

sing(X
an,Z), which receives a natural map from

Ai(X).) They vanish when i > rankF , and of course also when i > dimX. For any product
of Chern classes that lies in An(X), we get a numerical invariant of F via the degree map
An(X)→ Z. For example, if X is a surface, we have two independent Chern numbers, c2 and
c21. Finally, c1(F ) has a concrete interpretation: when F = O(D) is a line bundle, c1(F ) is just
[D] ∈ A1(X). In general, c1(F ) = c1(detF ).

3 K3 surfaces

A K3 surface X/k is defined to be a smooth, proper, geometrically irreducible surface with
trivial canonical bundle KX

∼= OX , and with H1(X,OX) = 0.

Geometrically speaking, the first condition tells us that there is a unique globally-defined alge-
braic volume form on X. This is something like saying that X has curvature 0 as a complex
manifold. Drawing a comparison to the trichotomy of curves, varieties with this property (called
Calabi-Yau) are analogous to elliptic curves. The second condition excludes the other obvious
surface analog of elliptic curves, namely abelian surfaces.

K3 surfaces can be seen as analogs of elliptic curves in another sense: they are often at the
bounds of what is complicated but tractable. This is true arithmetically as well as geomet-
rically: for example, K3 surfaces are among the few classes of varieties for which the Tate
conjecture is known. (Check on this.)
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Just to be able to get our hands on some K3 surfaces, let’s describe those K3’s that are complete
intersections in PN . Suppose that X is a complete intersection in PN of smooth hypersurfaces
of degrees d1, . . . , dN−2. It can be checked that KX = OPN (−N − 1 +

∑
di)|X , so we need∑

di = N + 1 in order for X to be K3. All such complete intersections turn out to actually be
K3’s. Notice, moreover, that if we assume without loss of generality that all di > 1, then we
get very few options for (N, {di}): X can be a quartic in P3, the intersection of a cubic and a
quadric in P4, or the intersection of three quadrics in P5.

Before starting our first example, let’s write down a quick lemma:

Lemma 3.1. If X is a K3 surface, then all moduli spaces M s(2, det = Q,∆) are either empty
or smooth of expected dimension ∆− (r2 − 1)χ(X,OX) = ∆− 6 = 4c2 − c21 − 6.

Notational aside: up until now, we have been considering moduli spaces of sheaves with a
given Hilbert polynomial. It may appear that the Hilbert polynomial is absent from the new
notation that Huybrechts and Lehn have sprung upon us (without explanation!), but it is in fact
there. The Hilbert polynomial contains exactly the same information as the rank and Chern
classes. (This can be seen from Riemann-Roch for surfaces, or more generally Grothendieck-
Riemann-Roch.) It may still appear that the first Chern class is missing, but we can recover it as
c1(detF ). I don’t have a nice, succinct formula expressing the correspondence between the two
types of data—I think it relies on knowledge of the canonical divisor, the Euler characteristic
of X, the polarization, and various intersection numbers—but it is true that these are just two
different ways to package the same information.

Proof. Fix a stable sheaf F ; we want to show that the obstruction space Ext2(E,E)0 vanishes.
Recall that for X a K3 surface, we have ωX = KX = OX . By a version of Serre duality, we have
Exti(A,B) = Ext2−i(B,A ⊗ ωX)∨ = Ext2−i(B,A)∨ for A,B any coherent sheaves. We have
seen that Hom(E,E) = k, so Ext2(E,E) = Ext0(E,E)∨ ∼= k. But Ext2(E,E)0 is by definition
the kernel of a surjective map Ext2(E,E) → H2(X,OX), so it must vanish. It follows by our
earlier criterion that M(P,Q) = M(2, Q,∆) is smooth of the expected dimension at all stable
points; i.e. M s(2, Q,∆) is either empty or smooth of expected dimension. Finally, to actually
compute the expected dimension, recall that χ(X,OX) = 1− 0 + 1 = 2.

4 First example

Let X be a “general” K3 surface of the first type above, namely a smooth quartic surface in
P3. The Noether-Lefschetz theorem asserts that Pic(X) is generated by OX(1) = OP3(1)|X
for a general such surface, so we have a canonical choice of polarization. We are interested
in the moduli spaces M(r = 2, det = OX(−1), c2), for c2 an integer. Fact (why?): all
µ-semistable sheaves with this determinant are µ-stable. This doesn’t seem to
come from Corollary 5.3.3, because I don’t think we generally have a fibration.
So M(2,OX(−1), c2) = M s(2,OX(−1), c2). By our lemma, this is either empty or smooth
of dimension 4c2 − c21 − 6. But c1 can be determined in terms of det = OX(−1): whenever
detF = OX(−1), we have c1(F ) = −[H] ∈ A1(X), where H is a hyperplane divisor so that
OX(−1) = OX(−H). Then c21 = (−H).(−H), the self-intersection number of the hyperplane
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class, which is degX = 4. So M(2,OX(−1), c2) is either empty or smooth of dimension 4c2−10.

What c2 are we interested in? If c2 ≤ 2, then the expected dimension above is negative, which
proves that the moduli spaces are empty. If c2 = 3, we expect a surface; if 4, a 6-dimensional
smooth variety, and so on. Let’s consider the first nontrivial case, c2 = 3. We hope that this
moduli space will be nonempty, and thus a smooth projective surface. Moreover, based on our
philosophy that geometric properties of X carry over to the moduli spaces of its sheaves, we
hope that this surface will somehow resemble X. We might even dare to hope that:

Claim 4.1. The moduli space M(r = 2, det = OX(−1), c2 = 3) is isomorphic to X.

Proof. (Sketch.)

5 Second example

Let X be a K3 surface, and suppose X admits an elliptic fibration π : X → P1 (i.e. the
general fiber is a smooth curve of genus 1), with irreducible fibers. Suppose also that π admits
a section σ ⊂ X. It follows from the adjunction formula that σ is a (−2)-curve. Now let f be
the divisor given by a fiber of π. Let H = σ + 3f , and let Hm = H + mf for m ≥ 0. By the
Nakai-Moishezon criterion, these Hm are ample divisors.

Consider the moduli spaces MHm(r = 2, det, c2). If we fix c1 and c2 with c1.f odd, and take m
sufficiently large, we can again brush aside the issue of semistability versus stability, thanks to
the technical criterion of Corollary 5.3.3.

Claim 5.1. If m is sufficiently large, then M = MHm(r = 2, det = OX(σ − f), c2 = 1) ∼= X.

To clarify some things in the statement: the choice of polarization actually matters here,
and we are choosing Hm. It is true that c1.f is odd, because c1 = σ − f , and we have σ.f = 1
and f.f = 0. Another sanity check: the expected dimension of this moduli space is ∆ − 6,
where

∆ = 4c2 − c21 (2)

= 4− (σ − f)2 (3)

= 4− (σ2 − 2σ.f + f 2) (4)

= 4− (−2− 2 + 0) = 8. (5)

So we do actually expect a surface.

Proof. Huybrechts and Lehn give two proofs, one using the Serre correspondence and one using
elementary transformations. (We certainly do not need to work through the general moduli
space construction!) Instead of giving these proofs in detail, let’s just briefly state the funda-
mental idea of each of these methods.

The Serre correspondence is a process by which we can associate to a codimension-two subva-
riety (i.e. a closed point) a rank-2 vector bundle. More precisely, for Z ⊂ X a local complete
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intersection of codimension 2, IZ its ideal sheaf, and L and M any line bundles on X, the Serre
correspondence gives a necessary and sufficient condition for the existence of a vector bundle
E fitting into a short exact sequence

0→ L→ E →M ⊗ IZ → 0. (6)

In this case, one can prove the claim by showing (more or less) that every stable rank-2 bundle
on X arises uniquely from the Serre correspondence.

Elementary transformations give another method of constructing vector bundles on X. If
i : C ↪→ X is an effective divisor on X, F is a vector bundle on X, and G is a vector bundle on
C, we say E is an elementary transformation of F along G if it fits into a short exact sequence

0→ E → F → i∗G→ 0. (7)

It can be shown that every rank-r vector bundle on X can be written as an elementary trans-
formation of O⊕rX (nH) along a suitable line bundle on a curve on X, for sufficiently large n.
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